Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
preprints.org; 2023.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202306.0170.v1

ABSTRACT

As the name implies, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA virus and a member of the corona virus family, primarily affecting the upper respiratory system and the lungs. Like many other respiratory viruses, SARS-CoV-2 can spread to other organ systems. Apart from causing diarrhea, another most common but debilitating complication caused by the SARS-CoV-2 is neurological symptoms and cognitive difficulties, which occur in up to two thirds of hospitalized covid patients and ranging from shortness of concentration, overall declined cognitive speed to executive or memory function impairment. Neuro-cognitive dysfunction and “brain fog” are frequently present in COVID-19 cases, which can last several months after the infection, leading to disruption of daily life. Cumulative evidence suggests that SARS-CoV-2 affects vasculature in the extra pulmonary systems directly or indirectly, leading to impairment of endothelial function and even multi-organ damage. The post COVID-19 long-lasting neurocognitive impairments have not been studied fully; and the underlying mechanism remains elusive. In this review, we summarize the current understanding of the effects of COVID-19 on vascular dysfunction and how vascular dysfunction leads to cognitive impairment in patients.


Subject(s)
Coronavirus Infections , Memory Disorders , Vascular Diseases , COVID-19 , Diarrhea , Cognition Disorders
2.
Borsa Istanbul Review ; 2022.
Article in English | ScienceDirect | ID: covidwho-2158520

ABSTRACT

This paper investigates the link between crude oil prices (COP) and green bonds through a rolling-window Granger-causality test. The positive, negative, and uncorrelated impacts of COP on the green bond index (GBI) are captured with the same sample. The positive effects show that the prosperity of the green bond market is promoted by the high COP, demonstrating that green bonds can avoid shocks from COP. Nevertheless, due to the high profits of the green energy industry and the excess supply on the oil market, the negative impact between COP and GBI is also found. These results are not completely consistent with the price correlation model between oil and green bonds. Furthermore, the positive impact of the GBI on COP shows that green bonds cannot moderate the oil crisis due to COVID-19, instability in the international political environment, and the immaturity of green bonds market. In addition, depending on the quantile Granger-causality test, only high COP affects the GBI, and this asymmetric feature is attributed to increasing production costs and environmental protection pressure. Understanding the nexus between COP and the GBI is of practical significance for bond issuers, regulators, and investors.

3.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1122886.v1

ABSTRACT

Background: SARS-CoV-2 is susceptible to frequent mutations and gets transformed into variants therefore identifying novel multi targeting remedies is necessary in formulating strategies to overcome the pandemic. Methods: : Traditional Chinese medicine based formula Jing Si herbal (JSH) was screened and analyzed by HPLC to evaluate its ability to act against infection by SARS-CoV-2 variants. The 3CL protease and RdRp assay kit were utilized to detect the enzyme activity. In order to determine the effect of JSH on the binding efficiency and viral penetration of SARS-CoV-2 variants, Calu-3 lung cells and Caco-2 colon cells were infected with fluorescent SARS-CoV-2 pseudo type lentiviruses. In addition, the effect of JSH (16.22 mg /mice/day and 48.66 mg/mice/day) on the viral load in SKH1J mice exposed to inhalation of luminescent SARS-CoV-2 variants for three days was determined. Results: : The JSH was found to be effective in inhibiting the viral entry into Calu-3 and Caco-2 cells and in mice pre-treated with JSH for 3 days also inhibited the viral load exposed to different SARS-CoV-2 variants. Interestingly, JSH also decreased 3cL and RdRp activity thereby revealing the multi targeting nature of JSH and therefore will be a potential preventive SARS-CoV-2 infection. Conclusion: Taken together, our present results revealed that JSH could be a potential candidate for COVID-19 treatment.


Subject(s)
COVID-19
4.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2109.13801v1

ABSTRACT

The forecast combination puzzle is often found in literature: The equal-weight scheme tends to outperform sophisticated methods of combining individual forecasts. Exploiting this finding, we propose a hedge egalitarian committees algorithm (HECA), which can be implemented via mixed integer quadratic programming. Specifically, egalitarian committees are formed by the ridge regression with shrinkage toward equal weights; subsequently, the forecasts provided by these committees are averaged by the hedge algorithm. We establish the no-regret property of HECA. Using data collected from the ECB Survey of Professional Forecasters, we find the superiority of HECA relative to the equal-weight scheme during the COVID-19 recession.


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.18.256776

ABSTRACT

Disrupted antiviral immune responses are associated with severe COVID-19, the disease caused by SAR-CoV-2. Here, we show that the 73-amino-acid protein encoded by ORF9c of the viral genome contains a putative transmembrane domain, interacts with membrane proteins in multiple cellular compartments, and impairs antiviral processes in a lung epithelial cell line. Proteomic, interactome, and transcriptomic analyses, combined with bioinformatic analysis, revealed that expression of only this highly unstable small viral protein impaired interferon signaling, antigen presentation, and complement signaling, while inducing IL-6 signaling. Furthermore, we showed that interfering with ORF9c degradation by either proteasome inhibition or inhibition of the ATPase VCP blunted the effects of ORF9c. Our study indicated that ORF9c enables immune evasion and coordinates cellular changes essential for the SARS-CoV-2 life cycle. One-sentence summarySARS-CoV-2 ORF9c is the first human coronavirus protein localized to membrane, suppressing antiviral response, resembling full viral infection.


Subject(s)
COVID-19
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.18.256735

ABSTRACT

There is an urgent need to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) that leads to COVID-19 and respiratory failure. Our study is to discover differentially expressed genes (DEGs) and biological signaling pathways by using a bioinformatics approach to elucidate their potential pathogenesis. The gene expression profiles of the GSE150819 datasets were originally produced using an Illumina NextSeq 500 (Homo sapiens). KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology) were utilized to identify functional categories and significant pathways. KEGG and GO results suggested that the Cytokine-cytokine receptor interaction, P53 signaling pathway, and Apoptosis are the main signaling pathways in SARS-CoV-2 infected human bronchial organoids (hBOs). Furthermore, NFKBIA, C3, and CCL20 may be key genes in SARS-CoV-2 infected hBOs. Therefore, our study provides further insights into the therapy of COVID-19.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19 , Respiratory Insufficiency
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.16.20176065

ABSTRACT

The molecular pathology of multi-organ injuries in COVID-19 patients remains unclear, preventing effective therapeutics development. Here, we report an in-depth multi-organ proteomic landscape of COVID-19 patient autopsy samples. By integrative analysis of proteomes of seven organs, namely lung, spleen, liver, heart, kidney, thyroid and testis, we characterized 11,394 proteins, in which 5336 were perturbed in COVID-19 patients compared to controls. Our data showed that CTSL, rather than ACE2, was significantly upregulated in the lung from COVID-19 patients. Dysregulation of protein translation, glucose metabolism, fatty acid metabolism was detected in multiple organs. Our data suggested upon SARS-CoV-2 infection, hyperinflammation might be triggered which in turn induces damage of gas exchange barrier in the lung, leading to hypoxia, angiogenesis, coagulation and fibrosis in the lung, kidney, spleen, liver, heart and thyroid. Evidence for testicular injuries included reduced Leydig cells, suppressed cholesterol biosynthesis and sperm mobility. In summary, this study depicts the multi-organ proteomic landscape of COVID-19 autopsies, and uncovered dysregulated proteins and biological processes, offering novel therapeutic clues. HIGHLIGHTSO_LICharacterization of 5336 regulated proteins out of 11,394 quantified proteins in the lung, spleen, liver, kidney, heart, thyroid and testis autopsies from 19 patients died from COVID-19. C_LIO_LICTSL, rather than ACE2, was significantly upregulated in the lung from COVID-19 patients. C_LIO_LIEvidence for suppression of glucose metabolism in the spleen, liver and kidney; suppression of fatty acid metabolism in the kidney; enhanced fatty acid metabolism in the lung, spleen, liver, heart and thyroid from COVID-19 patients; enhanced protein translation initiation in the lung, liver, renal medulla and thyroid. C_LIO_LITentative model for multi-organ injuries in patients died from COVID-19: SARS-CoV-2 infection triggers hyperinflammatory which in turn induces damage of gas exchange barrier in the lung, leading to hypoxia, angiogenesis, coagulation and fibrosis in the lung, kidney, spleen, liver, heart, kidney and thyroid. C_LIO_LITesticular injuries in COVID-19 patients included reduced Leydig cells, suppressed cholesterol biosynthesis and sperm mobility. C_LI


Subject(s)
COVID-19
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.18.256578

ABSTRACT

There is an urgent need for a safe and protective vaccine to control the global spread of SARS-CoV-2 and prevent COVID-19. Here, we report the immunogenicity and protective efficacy of a SARS-CoV-2 subunit vaccine (NVX-CoV2373) produced from the full-length SARS-CoV-2 spike (S) glycoprotein stabilized in the prefusion conformation. Cynomolgus macaques (Macaca fascicularis) immunized with NVX-CoV2373 and the saponin-based Matrix-M adjuvant induced anti-S antibody that was neutralizing and blocked binding to the human angiotensin-converting enzyme 2 (hACE2) receptor. Following intranasal and intratracheal challenge with SARS-CoV-2, immunized macaques were protected against upper and lower infection and pulmonary disease. These results support ongoing phase 1/2 clinical studies of the safety and immunogenicity of NVX-CoV2327 vaccine (NCT04368988). HighlightsO_LIFull-length SARS-CoV-2 prefusion spike with Matrix-M1 (NVX-CoV2373) vaccine. C_LIO_LIInduced hACE2 receptor blocking and neutralizing antibodies in macaques. C_LIO_LIVaccine protected against SARS-CoV-2 replication in the nose and lungs. C_LIO_LIAbsence of pulmonary pathology in NVX-CoV2373 vaccinated macaques. C_LI


Subject(s)
COVID-19 , Lung Diseases
SELECTION OF CITATIONS
SEARCH DETAIL